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Australian National University and Universitat Bern 

In fault-line estimation in spatial problems it is sometimes possible 
to choose design points sequentially, by working one's way gradually 
through the "response plane," rather than distributing design points across the 
plane prior to conducting statistical analysis. For example, when estimating 
a change line in the concentration of resources on or under the sea 
bed, individual measurements can be particularly expensive to make. In 
such cases, sequential, design-adaptive methods are attractive. Appropriate 
methodology is largely lacking, however, and the potential advantages of 
taking a sequential approach are unclear. In the present paper we address 
both these problems. We suggest a methodology based on "sequential 
refinement with reassessment" that relies upon assessing the correctness of 
each sequential result, and reappraising previous results if significance tests 
show that there is reason for concern. We focus part of our attention on 
univariate problems, and we show how methods for the spatial case can be 
constructed from univariate ones. 

1. Introduction. Consider the problem of estimating a fault line in a response 
surface by sampling the surface sequentially. For example, the surface might 
represent the concentration of a mineral at a given depth in the earth's crust, or 
the level of a nutrient on the ocean floor. Each sampling operation incurs a cost, 
which is reduced by minimizing the number of samples drawn for a given order 
of accuracy. We shall show that sequential sampling offers an opportunity for 
making large savings. In particular, if the fault line is estimated using a second- 
order method, requiring two derivatives, then the number of sampling operations 
needed in order to achieve 0(6)  accuracy, as 6 + 0, is reduced from 0( s - ~ / ~ ) ,  
if the points are scattered across the plane prior to estimation, to 0 ( 6 - ' I 2 ) ,  
multiplied by a logarithmic factor, when the points are placed sequentially into 
the plane. Relative expense is reduced by an even greater amount if the alternative 
is a predetermined gridded design, which gives particularly poor performance per 
sample point. The rate 0(SP1 I2 )is optimal, although the logarithmic factor may 
depend on the nature of the error distribution (in particular, whether it is heavy- 
tailed) or the method used. 
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Sequential sampling for changepoint estimation on the line is a closely related 
problem. Indeed, in many circumstances a solution to the spatial problem would 
involve repeated application of methods in the univariate case, and so we address 
the latter problem first. There, the expense of achieving O(6) accuracy can be 
reduced from 0(6-I), if design points are placed in predetermined positions, to 
little more than 0(I log S I) if they are chosen sequentially. 

These results are closely linked to optimal convergence rates in more familiar, 
deterministic problems. Consider, for example, the problem of estimating the 
location 8 of a jump discontinuity in an otherwise-smooth univariate function f ,  
defined on the line and which we may observe without error. Make the task 
relatively simple by supposing f takes constant, known, unequal values a and b to 
the left and right, respectively, of 8 ,  and consider 8 to be a random variable that is 
uniformly distributed in a unit interval. Then the search algorithm that minimizes 
the expected length (with respect to the uniform distribution of 8 )  of an interval 
that is known to contain 8 involves observing the value of f at the midpoint of the 
previously computed interval. Thus, after n steps the value of 0 is narrowed to an 
interval of length 2-n within which it lies with probability 1. 

In the following sense, the algorithm suggested in Section 2 attains this optimal 
convergence rate arbitrarily closely, in the context of functions observed with 
noise. Suppose only that the noise distribution has zero mean and finite variance; 
assume only that f is smooth, rather than strictly constant, away from the jump; 
and take p = p(n) to be any positive sequence converging to 0. Then we can 
produce, after n sequential sampling operations, a confidence interval of width 
e-pPz(rather than e-"log2 in. the algorithm of the previous paragraph) within which 
the true value of 8 lies with probability converging to 1 as n -+ oo. 

If the error distribution is known then our algorithm can be modified so that 
p is kept fixed at a strictly positive value. On the other hand, assuming only that 
the error distribution has a finite moment generating function, and taking p to 
converge to 0 at rate (log n)-)' for some y > 2, we may ensure that the confidence 
interval for 8 has coverage I - for ail C > 0. That is, our point estimator 8~ ( n - ~ )  
of 8 satisfies 

for all C > 0. Of course, since we may take C > 1 then strong convergence also 
obtains: 16 - Q 1 5 exp{-n (log n)-Y ) with probability 1. 

It follows that convergence rates attainable using sequential algorithms are 
much faster than those available using traditional methods based on predetermined 
design points. In particular, if the n points at which f is observed are equally 
spaced across the interval then the rate at which 0 is estimated cannot be improved 
beyond 0(n- ' ) ,  with or without stochastic error in observations of f .  See, 
for example, Loader (1996), Miiller and Song (1997) and Gijbels, Hall and 
Kne'ip (1999). These results imply the improvements claimed earlier for sequential 



923 SEQUENTIAL ESTIMATION OF DISCONTINUITIES 

sampling. While the gains are theoretical, they are so great that their practical 
implications too can be expected to be significant; see the numerical results in 
Section 5. 

The algorithm that we suggest involves sequential refinement of confidence 
intervals for the unknown changepoint and makes a reappraisal of the accuracy of 
the interval after each sequential step. If the reappraisal suggests that an error may 
have been committed then the next step (perhaps the next few steps) will involve 
checking current and previous decisions rather than refining the current confidence 
interval. One can obtain a simpler procedure by ignoring the reappraisal step, but 
from a theoretical viewpoint this is suboptimal, and in numerical practice it does 
not enjoy as good performance as the method introduced in Section 2. 

There is a particularly extensive literature on estimation of jump points in 
otherwise-smooth functions of a single variable. In addition to the work cited 
above, recent wavelet-based methods [e.g., Wang (1995) and Raimondo (1996)l 
should be mentioned. Wang (1995) gives a particularly good literature survey, 
which we shall not repeat here except to note that a conference proceedings 
edited by Carlstein, Miiller and Siegmund (1994) discusses an extensive variety 
of changepoint estimation problems in univariate cases. 

In the spatial context there is a large, multidisciplinary literature on boundary 
detection, although seldom involving sequential methods. Techniques for global 
search [e.g., Zhigljavsky (1991) and Pronzato, Wynn and Zhigljavsky (2000)l are 
exceptions. However, while they frequently involve random aspects of design, 
they are seldom constructed to accommodate stochastic errors in observations 
of response functions. Optimal convergence rates and methods, for estimating 
boundaries using predetermined (i.e., nonsequential) design, have been discussed 
by Korostelev and Tsybakov (1993) and Mammen and Tsybakov (1995), for 
example. A likelihood-based approach has been suggested by Rudemo and 
Stryhn (1 994) and alternative procedures have been proposed by Qiu and Yandell 
(1997), Qiu (1998) and Hall and Rau (2000). Particular properties of boundary 
estimation problems when design points are restricted to a regular lattice have 
been addressed by Hall and Raimondo (1997, 1998). The connections that exist 
between methods for image analysis and statistical techniques based on smoothing 
have been elucidated and developed by Titterington (1985a, b) and Cressie [(1993), 
pages 528-5301. 

The problem of sequentially inverting or minimizing a function observed with 
error, which is at the heart of a particularly extensive literature on stochastic 
approximation and sequential inference, is also related to that of sequential 
estimation of a changepoint. For the former, see, for example, Ruppert (1 99 1) and 
Chapter 15 of Ghosh, Mukhopadhyay and Sen (1997). However. the nature of the 
results there is very different, not least in terms of the convergence rate. Moreover, 
the sequential sampling considered in the present paper is in batches, rather than 
individual data. 
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2. One-dimensional problem. 

2.1. Overview ofproblem and methodology. Assume the function f is defined 
on an interval 1 ,  and has a jump discontinuity at a point 0 in the interior of 1 .  
Specifically, we ask that, for differentiable functions gl and g2,  

where 

and Bo denotes the true value of 0 . We shall observe f at points x = x,E 1,subject 
to error: Y, = f (x,)+ E,,where the design points x,are open to sequential choice 
and the errors E, are independent and identically distributed with zero mean. The 
case where there is more than one changepoint and the number of changepoints 
is known would be treated very similarly. It has virtually identical theoretical 
properties and is omitted here only in order to simplify our discussion. 

The case where the number of changepoints is unknown is more difficult. From 
a theoretical viewpoint it can be resolved satisfactorily as long as the number 
is known to be finite. There, the number can be determined empirically, to such 
accuracy that the probability of error converges to zero faster than the inverse of 
any polynomial in sample size. 

Section 2.2 will introduce our recursive method for estimating 6. In practice this 
technique would be applied only after a "pilot" estimator, 8,had been constructed 
using a portion of the permitted sample size, n. (A likelihood ratio approach 
is one technique for constructing 8. We use this approach in the simulation 
study in Section 5.) This would lead to a preliminary interval 1 1 ,a strict subset 
of 1 ,  in which the first estimator in the recursion would be constructed, using 
m design points xl < . . . < x,, equally spaced on 1 1 .(Here and below, saying 
that xl , . . . , x, are "equally spaced" on [c,dl means that, if we define xo = c and 
x,,+l = d ,  then the values of x,-x,- 1 ,  1 5 i 5 m + 1, are all equal.) For notational 
simplicity, in Section 2.2 we shall take the permitted sample size for the recursive 
part of the algorithm to be n,  although in our theoretical account in Section 4 we 
shall reduce this by the number of data that are used to construct 8. 

The interval 11 is the first of a sequence of confidence sets for the true value of 0 .  
At the kth stage of the algorithm we shall determine 1k. Assume n = tin, where 
!. m are positive integers. Each sequential sample will be of size m,  and there will 
be t stages in the algorithm. In the first stage, distribute m equally spaced points on 
the first interval 1 and sample f at those places. Under the temporary assumption 
that the data are Normally distributed with known variance, compute the statistic 
T ( 0 ) associated with a likelihood ratio test of the null hypothesis that f is constant 
on 11, against the alternative that f takes different but constant values on either 
side of 0 . Take i1to be that value of 0 , chosen from among the in design points, 
that gives an extremum for the test. 
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2.2. Sequential refinement with reassessment. Let A. > 0. Assume that at the 
kth stage of the merhod, for 1 ( k 5 2 - 1 ,  an estimator 6 k  was obtained. 
Distribute m equally spaced points on Lx = [& - ( m - ' ~ ) ~ ,6 k  + ( m - ' ~ ) ~ ]and 
construct the likelihood ratio test restricted to the new data on lA.The test leads 
to one of two possible conclusions. Either the maximum of the test statistic, over 
values of 8 equal to the design points, exceeds a certain critical point cent, in which 
case we define to be the value at which the maximum is attained, and pass to 
the next stage; or the tnaximum of the test statistic does not exceed cCrlt,in which 
case we reassess our position. 

We conduct the reassessment by considering again the interval l k ,  distribut- 
ing m equally spaced points there, and constructing the likelihood-ratio test sta- 
tistic for these new design points. (The data drawn at each step of the reassess- 
ment are completely independent of those used at any previous stages or steps.) 
If the test statistic computed on the latest occasion exceeds cCrlt,then we deem 
the (k + 1)st stage to have terminated and take ik+]to equal the value of the de- 
sign point in $k at which the most recently computed test statistic achieved its 
maximum. On the other hand, if the most recently computed maximum does not 
exceed cC,!then the reassessment should continue. In this event we go back to 
the previous interval & - I ,  distribute m new points there, compute the test statistic 
for these points, and compare it with the value obtained earlier for the previous 
dataset on This rnakes it possible to correct estimation errors that would oth- 
erwise perpetuate, resulting from a wrong decision being taken at some stage. See 
Sections 2.5 and 5.5 for variants of this sequential refinement with reassessment 
(SRR) method. 

This sequence of operations, in the reassessment part of the (k + 1)st stage, 
continues until one of the following occurs: (a) in the next sampling step we would 
exceed the total number of data, n ,  that we are permitted to draw; or (b) we get back 
to $ 1  without having obtained a significant value (i.e., a value exceeding cCrlt)of 
the test statistic; or (c) neither (a) nor (b) occurs before we obtain a significant value 
of the statistic. In case (c) we take Gk+' to be the design point, in the most recent 
sample, at which the most recently computed test statistic achieved its maximum 
value. If, at this time, we have used up all the n permitted sampling operations, 
then we take the final estimator iSRRto equal 8k+l. If we still have data remaining, 
however, then the sequential procedure continues to the next stage. In case (a) we 
take &RR = &. In case (b) we continue drawing new sample3 of size m ,  with 
design points equally spaced on 11,until either we reach the end of our allowance 
of n data (in which case we take iSRR= &) or we obtain a test statistic whose 
value exceeds cCrIt(in which case 8k+lis taken to be the point at which the most 
recently computed test statistic achieved its maximum value, and we pass to the 
next stage). 

This algorithm can be represented graphically in at least two ways: first, as a 
tree diagram, in which all but one of the branches of the tree denote false starts 
that terminated as the result of a reassessment cycle; and, second, as a sequence 
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FIG.1. Schematic 1-epresentatioiz of the SRR method. Depth, k ,  in the algorithnz is represented by 
the number of units on the vertical axis; pluses represent steps where the test statistic exceeds the 
critical value, and ininuses represent tlze opposite outcome. 

of directed parallel lines. in which lines from left to right denote sequences of 
consecutive steps in which the value of the test statistic exceeded ccrit,and lines 
from right to left denote consecutive steps where the test statistic was less than cCfit 
and that step was used to reassess the step indicated immediately above it. Figure 1 
illustrates the latter representation. The process starts from the top left corner and 
the vertical positions of the boxes represent depth, k,'in the algorithm. The pluses 
represent steps where the test statistic exceeded the critical value, and the minuses 
represent the complementary situation. 

2.3. Main features of sequential rejinement with reassessment. For a gen- 
eral sequential method constructed along lines similar to those suggested in Sec- 
tion 2.2, the final estimators of 8 would nominally have an accuracy equal to 
the width of the interval lkat which the sequential construction terminated. If 
the interval at termination is At then its width will be proportional to (un-' A)' = 
( m - ' ~ ) ~ ' " ' .However, without the reassessment step the estimator may stray from 
the true value of 8 well before the end of the sequence of !stages, so that later 
stages will be unreliable. In this case more data need to be used to guard against 
incorrect decisions at successive stages. The reassessment step in the SRR algo- 
rithm renders this unnecessary, however. As a result, more data can be used to 
estimate the changepoint itself. 
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For the SRR method, while the number of stages is random, with probability 
tending to 1 it exceeds 6 l  for some fixed 6 E (0, 1). Consequently. with high 
probability the width of the interval on termination will be no greater than 
(~n- 'h)',lrn. And because of reassessment, the probability that this interval 
actually contains 8 will also be high. 

2.4. Likelihood-ratio test. Assume that at a given stage of the algorithm, 
data Yi(where 1 5 i (m) are generated by the model Y, = f (x,)+ r, , where 
the E,'S are independent and identically distributed errors with zero mean and 
finite variance c 2 ,  and the design points xl < . . . < x,, are equally spaced on 
an interval l k .Assuming that a2 is known, a likelihood ratio test of the null 
hypothesis that f is constant on the interval, against the alternative that it takes 
different but constant values on either side of a changepoint 8 ,  is to reject the null 
hypothesis if the quantity 

exceeds a critical point. Here, Y ,  Y1 and p2 denote the average values of Y, over 
all indices i, over i such that x, 5 8 and over i such that x, > 8, respectively, and 
m, m I($) and m2(8) are the respective numbers of terms in these averages. 

Although T (8) is motivated under the assumption that f is piecewise constant, 
and that the errors are Normally distributed, it is applicable in a wide range of other 
cases. Our theory will bear this out. The method could be refined by, for example, 
using a piecewise linear (rather than simply piecewise constant) approximation 
to f , and estimating the slopes of f to the left- and right-hand side5 of a putative 
value of 8.  

If the interval lkon which the test statistic is constructed is short, if m is large, 
and if the true value Q0 of 8 divides the interval l k  into the proportion p : (1 - p), 
then the maximum value attained by T (8) will equal approximately ~ n p ( l  - p)y 2 ,  
and the value at which it is achieved will be near to 80. [We defined y at (2. I) . ]  
These heuristic considerations suggest taking the critical point cCrltfor a test based 
on T(8) to equal m t ( l  - t),where 0 < 6 < p.This we do; see Section 4. In our 
asymptotic treatment, other aspects of the size of cCrltare unimportant. 

2.5. Refinements. The SRR method suggested in Section 2.2 is only an 
example of a range of sequential techniques. In particular, one does not need 
to reassess at each step; reassessment at an appropriate proportion of steps is 
adequate. It is not essential to retrace one's path as soon as a reassessment 
contradicts a previous decision; one can wait until a number of consecutive 
contradictions are obtained. And one can reuse, perhaps in a weighted form, values 
obtained in the same interval in previous steps so as to recycle earlier data and 
improve efficiency. 
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It is possible to distribute design points more toward the center than the edges 
of confidence intervals, reflecting the relative likelihood that the true value of 6' 
lies in different parts of the intervals. Moreover, particularly when reassessing an 
earlier decision, one need not place the design points at the same places as before. 
Changes such as these introduce only notational technicalities into the theoretical 
arguments in Sections 4 and 6 and have little effect on numerical properties. 

3. Spatial problem. In the spatial case, f represents a response surface 
with a fault-type discontinuity in the ( x ( l ) , lane. The analogue of the 
representation at (2.1) in this case is 

where 

x = ( x ( ' ) ,x ( ~ ) ) .  =the fault line is denoted by C and has equation x(2)  @(x(')), and 
D,g(x) denotes the derivative of g ( x ) in the direction of the unit vector w. The 
model at (3.1) requires C to admit a single-valued Cartesian equation, although 
our methods are valid more generally. 

We make no assumption about relative values of derivatives of gl and g2 on 
either side of the fault line, and so the fault cannot necessarily be interpreted as 
the result of "slippage." We may observe f at arbitrary points x in the plane, 
subject to additive error. The x's are open to sequential choice, and the errors are 
independent and identically distributed. Using information obtained in this way we 
wish to estimate C, or equivalently to estimate @. 

As in the univariate case, it is instructive to consider the problem of approximat- 
ing C when f may be observed detenninistically, without stochastic error. This we 
do below, before developing the stochastic case by analogy. 

If we are given a sequence of v points along a given section of C, approximately 
equally spaced, then C may be estimated with accuracy 0( v P k )by interpolation 
using a kth degree polynomial, provided its functional representation has at least 
k derivatives. We can of course improve on this rate if we have a parametric 
formula for C, but otherwise the rate o ( v - ~ )is optimal, in a minimax sense, for 
approximating a k-times differentiable curve from v approximately equally spaced 
points. 

Of course, even in a deterministic setting we would be unlikely to be given 
points that are actually on the fault line. However, if we approximate the curve 
in a sequential manner then at any stage of the algorithm we shall have a good 
current approximation to both the location and the tangent to C. To see how such an 
algorithm might proceed, suppose we wish to compute an approximation to C that 
is accurate to within 0 ( 6 ) , where 6 will be taken to converge to 0. Assuming the 
curve has k bounded derivatives, we strike an arc, of radius 0( & ' I k )  and centered at 
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the current point, across the tangent approximation to the curve in the direction of 
travel. By placing C1 I log61 points sequentially across the arc, where C1 > 0, and 
by measuring the response surface at those points and treating the approximation 
problem as one of estimating a changepoint in a univariate function defined on a 
line (on this occasion, the arc) and observed deterministically, without error, we 
may compute an approximation to the place at which the arc crosses the fault 
line, accurate to within 0(6'2), for any given C2 > 2, provided C1 is sufficiently 
large. See Section 1 for discussion of the problem of sequentially estimating a 
changepoint on a line, using deterministic data. 

This gives us a new current approximation to the fault line. By joining this 
point to the previous approximation and extrapolating in the direction of travel, we 
obtain a new approximation to the tangent. The error in the resulting approximation 
to slope is 0(6 'Ik),  assuming k > 2. If the arc that we strike across the tangent 
subtends angle n / 2  on either side of the point at which it intersects the tangent 
approximation, then it is sufficiently accurate for the next step of the algorithm. 

Arguing in this way, in the context of direct observation (i.e., without random 
error) of a response surface, we can construct an algorithm that approximates 
a k-times differentiable fault line to within O(S), uniformly along a bounded 
segment of its length, by using only 0(6-'Ik 1 logsl) sampling operations. We 
may start the algorithm by constructing initial approximations to a point on the 
fault line, and to a tangent at that point, using transects placed across the curve. 
These initial steps cost only O(I log 6 1 )  sampling operations, and so do not affect 
the overall order of magnitude of expense. 

The same approach may be employed when f is observed only with noise. The 
only significant change is that slightly more points need to be distributed across the 
arc when estimating the next point on the fault line and the gradient of the tangent 
at the next point. The increase is from 0(I log SI) to at most 0(I log 6 I I+"), for 
a > 0 arbitrarily small. (In fact, the factor I log 6 ICYmay be reduced to a power of 
log I log S I .) Therefore, for any a > 0, we may approximate a k-times differentiable 
fault line to within 0(6) after only 6-'Ik I log 6 1 '+"sampling operations, when the 
response surface is observed with stochastic error. This result will be discussed in 
more detail in Section 4; see particularly Theorem 4.3. A numerical example will 
be given in Section 5.6. 

4. Theoretical properties. It will be assumed that each test is conducted as 
described in Section 2.4, using c,,it =m<(l - 6) where 0 < 6 < $. Furthermore, 
each test will be applied only against values 8 =xi that are sufficiently far from 
the endpoints of 1 that both ml(8) and m2(8), in the definition of T(8) at (2.2), 
are averages of at least N = Cm data, for an arbitrarily small but fixed positive 
constant C 5 min(6, 1 - 6). Thus, an estimator 8 of 0 within an interval will 
be defined by maximizing T(8) over 8 = xi for N 5 i (n - N. For notational 
simplicity we shall treat N as though it were an integer. 
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Theorems 4.1 and 4.2 will address the one-dimensional problem, and Theo- 
rem 4.3 will illustrate application of Theorem 4.2 to the spatial problem. 

Assume the sampled data are generated by the model described in Section 2.1, 
where in particular f satisfies (2. I), and that the errors are independent and iden- 
tically distributed with zero mean and finite variance. Call these conditions (C1). 
Divide the proposed sample size, n, into two parts, of respective sizes 11 1 and n2. 
The value of n2 should be at least as large as 6n for some 6 E (0. I ) .  Draw ?zl  data 
in a single operation (that is. nonsequentially), and use them to construct a "pre- 
liminary" or "pilot" estimator 6 of the changepoint 8 ,  with the property that, for 
all a > 0 and some /3 > 0, 

Standard methods that guarantee (4.1) with B < 1 are discussed in papers cited in 
Section 1. The case j3 11 is not feasible unless an exceptionally fortuitous design 
sequence is selected. 

Divide the second sample into l subsamples of size rn, where l denotes the 
integer part of n2/m. Use these to carry out the "sequential refinement with 
reassessment" algorithm described in Section 2.2, starting with l1= (6 - n-B, 
6 + n-B) and producing the estimator kRR. 

We claim it is possible to choose l and nz so that, for any given sequence 
p = p(n) J/ 0, and any model satisfying (C1), isRR= 8o + Op(e-Pfl) as n + CQ. 

Indeed, iSRp, will satisfy 

THEOREM 4.1. Assume conditions (C1), and given p = p(n) 4 0, choose 
nz = m(n) and h = h(n) to diverge to m, in such a manner that hlrn -+ 0 and 
(nzp)-' log(m/h) -+ m. Using these values, construct iSRRas suggested above. 
Then (4.2) holds. 

A refinement of the proof of Theorem 4.1 shows that. for appropriate choices of 
m and h that are fixed and do not depend on a, there exists a fixed constant p > 0 
with the property isRR= Qo + Op (e-PR): 

lim lim inf P(1isRRQOI 5 Ce-pn) = 1.-
C - + w  M + E  

Choice of m, h and p depends intimately on properties of the error distribution, 
however. Therefore, (4.3) is arguably not as significant as the result addressed in 
Theorem 4.1. Nevertheless, construction of a version of &RR that gives (4.3) is 
straightforward if it is assumed that the errors are Gaussian. 

Next we state analogous results which provide a rate of convergence for the 
probability at (4.2). This will prove helpful in addressing extensions of our 
methods to the spatial case. Construct isRRas described earlier, by dividing the 
second potential sample size, n2, into t lots of size m each, with l equal to the 
integer part of n2/m. 
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THEOREM 4.2. Assume conditions (C1) and in addition that the error 
distribution hasjinite moment generating function in a neighborhood of the origin. 
Choose m =m(n) and h =A(n) such that 

(4.4) n-'m +m-'{A + (10gn)~)+A-l logn -+ 0, 

and for C1 > 0 put p =p(n) r Clm-' log(m/h), which converges to 0. Then 

for ~zllC > 0. 

For example, suppose we take h(n) =: (log n)'+'Y and m (n) =: (log n12+@, where 
0 < a < 1 + B ,  j3 > 0, and the notation a(n) x b(n) means that a(n)/b(n) is 
bounded away from zero and infinity as n + oo. Then (4.4) holds. This choice 
shows that we may ensure (4.5) with p = (logn)-v for any y > 2. In particular, 
the extra conservatism of procedures that have polynomially small chances of error 
involve a deterioration in the convergence rate by only a logarithmic factor applied 
to p. 

Section 3 introduced sequential methods for approximating a smooth fault line 
in a regression surface, assuming the surface could be observed without error. It 
was argued that the algorithm, and its accuracy and cost of sampling, are almost 
identical in the case of stochastic error. Theorem 4.3 below verifies this claim. 

Indeed, suppose we may observe the response surface with error: Y = f (x) +e ,  
where f satisfies (3.1), the function I) defining the fault line e has k bounded 
derivatives, and the errors s are independent and identically distributed with zero 
mean and finite moment generating function in the neighborhood of the origin. Call 
these conditions (C2). Assutne too that we have constructed an initial estimate of 
a point on the fault line and of the slope at that point, which are accurate to within 
CI 6'2 and C1 2jC3, respectively, for any C1 > 0 and some C2 > 1 and C3 > 0, with 
probability 1 - O(aC) for all C > 0, where 6 +0. (In view of Theorem 4.2, this 
order of accuracy may be achieved at the expense of only / log 61 sampling 
operations, for any a > 0, by sampling along a transect of the fault line.) Strike 
an arc of radius 6lIk across the tangent in the direction of travel, with its center at 
the previously computed approximation to a point on C, and subtending angle 7712 
radians on either side of the point at which it intersects the tangent estimate. By 
distributing I log 6 1 '+" points sequentially within the arc, where a > 0 is fixed but 
otherwise arbitrary, and by using either of the methods suggested in Section 2, we 
may locate the point at which the arc crosses the fault line to within 0(6'), and 
with probability 1- 0(6'), for all C > 0. (This result follows from Theorem 4.2.) 

Repeating this sequence of steps and noting that only polynomially many 
steps are required, whereas the error of approximation is of the stated size with 
probability I - O(aC) for all C > 0, we see that with the latter probability, 
after only 6-Ilk/ log6/'+" sampling operations, we have computed 6'Ik points 
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that are each within o(s') of the true fault line, for all C > 0, and are equally 
spaced except for errors that equal 0 ( 6 ~ )for all C > 0. Interpolating among 
these points, and exploiting the fact that f has k bounded derivatives, we obtain 
an approximation to the fault line that is accurate to O(6) .We have proved the 
following result. 

THEOREM4.3. If conditions (C2)hold and (zl > O then we may develop a 
sequential approximation to the fault line that, with probability 1 - for all 0(2iC) 
C > 0, is accurate to 0( 6 )  uniformly along any gitren, bounded segment of the line 
and employs no more than 6-'Ik I log 6 I l f L Y  sampling operations. 

Indeed, the factor I log 6 I l f L Y ,for any a > 0, may be reduced to 

for some /3 > 0, by refining the same argument. These sampling rates com-
pare favorably with those in more conventional problems, where a function 
with k bounded derivatives can be estimated, with accuracy no better than 
0 ( n - ~ 1 ( ~ + ' ) ) ,  random (e.g., Poisson-distributed) design points in the from n 
plane. See, for example, Korostelev and Tsybakov (1993)and Mammen and Tsy- 
bakov (1995).Solving the equation r l -k / i (k f  '1 = 6 for n ,  we see that such nonse- 
quential sampling procedures require at least 0(6- ' - ( ' Ik) )  sampling operations in 
order to achieve 0(6) accuracy; sequential sampling has reduced this to 0( 6 - ' I k ) ,  
times a logarithmic factor, for an approximation of O(6) .  [A logarithmic factor 
must be appended to the sample size O ( S - ' - ( ' I k ' )  in order that the rate 0 ( 6 )  be 
achievable uniformly along a given segment of the fault line. Otherwise the rate is 
available only in a pointwise sense.] 

5. Numerical studies. 

5.1. Simulation set-up. We shall treat the problem of sequentially estimating 9 
when f (x) = f (x ld)  -. I ( n  > 8 ) .  Suppose the true value of 9 is = 1 and 
consider drawing data Y = f (x) + s ,  where the errors s are independent and 
x E 1 = [0, I ] .  We present below simulation studies for errors having the Normal 
distribution with mean 0 and standard deviation o = 0.7. 

We shall compare a nonsequential estimation method, using the likelihood ratio 
test described in Section 2.4, with our SRR method. Both techniques will be 
applied to a common (but varying) number of sampled data, n .  Of course, the 
nonsequential method uses 11 observations at once when applying the likelihood 
ratio test: the SRR method employs the test using only a fraction of 11 each 
time. The nonsequential method involves distributing n equally spaced points x, 
within 1 and estimating Q as the value of x, at which T ( % ) ,defined at (2.2), 
achieves its maximum value. To ensure good performance of both approaches we 
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took 6' only as close to the ends of 1 as was possible without reducing the number 
of data on which T(8) was based. 

The SRR method requires us to specify A ,  l ,  the proportion of data used to 
construct the pilot estimator and also the critical point ccrit = m t ( l  - 6). For 
each chosen combination of parameters we performed N = 1000 independent 
sim~~lations.When implementing the SRR method we used i n  points to produce 
the pilot estimator. The latter was computed using the conventional nonsequential 
likelihood ratio approach discussed in the previous paragraph. The other i n  points 
were employed to improve the estimator, using our sequential method with l steps 
based on rn points each, so that n =2ln7. 

5.2. Comparison of sequential and nonseq~tential methods. We shall report 
results that compare the nonsequential and SRR methods for the following values 
of parameters: h = 15, 6 = 0.1 and l = 10. To ensure adequate quantities of data 
were used when computing the log-likelihood ratio, we did not permit i lnl  to get 
closer than 0.1 to the endpoints 0 and 1 of 1.Figure 2(a) plots the ratio of the 
standard errors for the sequential and nonsequential estimates obtained from the 
1000 independent simulations against the value of t n  in the range 50 to 250, in steps 
of 5. (The value of n in each case was 2lnz.) Specifically, for each estimator type 
(i.e., sequential or nonsequential) and each value of nz, we computed the standard 
error from the 1000 independent simulations. Then, for each given value of rn, to 
construct the ratio we divided the standard deviation for the sequential method by 
its counterpart for the nonsequential approach. It is clear from the figure that for 
rn > 75 the SRR method performs substantially better than the nonsequential one. 

Indeed, the improved performance is available much more generally than this. 
The increase in standard deviation of the SRR method at nz = 70 is the result of 
a single aberrant dataset out of the N = 1000 that we simulated in that setting. It 
can be removed by slightly increasing A,  6 and In. We have not done so, however, 
since the uncharacteristic decline in performance demonstrated by the "blip" in 
Figure 2(a) serves a didactic purpose, showing that properties of the SRR method 
depend to some extent on choice of the tuning parameters. 

The fluctuations that lead to the blip are indeed caused by very rare events, 
as panel (b) of Figure 2 shows. There we plot values of the ratios of robust 
scale estimators. Here each scale estimate is defined as the median of absolute 
differences between estimates of 6' and the true value of 8.  The value of the ratio 
is depicted by the unbroken line in the figure. The sequential method is seen to 
give improved performance by a factor of about 2.6 for rn = 30, rising to 1o6 for 
In = I00 and to 10'' for m > 200. 

It is readily seen from these results that the SRR method improves strikingly on 
even the best possible deterministic result, based on distributing n evenly spaced 
points in 1 and observing f' without noise. Even taking an extremely conservative 
view, the error of the best deterministic approximation can be no less than 
n-' times that of the absolutely best possible nonsequential estimator when noise 
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FIG. 2 .  (a) Ratio o f  .standard errors for sequential and nonsequential estimates; (b) nzedian 
absohtte deviation ratios (unbroken line), and their counterpart.s,for 90% quantiles (dotted line) and 
99% quuntiles (dashed line), for sequential and nonsequential methods. In each panel the vertical 
axis slzows the value of the ratio, and the horizontal uxis shows nz. Each sarnple size was n =20m. 

is present. However, as we have just seen, the SRR estimator is far more accurate 
than this. 

Some idea of the effects of stochastic variability can be gained by looking 
at ratios of high-level quantiles of absolute values of the differences between 
estimates and the true value of 0 .  Figure 2(b) shows plots of these ratios for 
90% quantiles (dotted line) and 99% quantiles (dashed line). In particular, the ratio 
of the 99% quantile is below 0.063 for all rn 2 50. In that sense, the error of the 
SRR estimator is more than 15 times less than that of its nonsequential counterpart, 
for 99% of samples whenever m > 50. 

5.3. Further analysis of SRR method. Implementation of the SRR method 
relies on choice of several parameters. Below we report on a comparison of results 
obtained when some parameters are varied while others are kept fixed. 

Changes in t of course influence the level of the likelihood ratio test. 
Choosing 6 too large results in too many refinement steps being rejected, which 
worsens overall performance of iSRR.To explore this property, two series of 
simulations were undertaken, one using ( = 0.1,0.12,0.14. . . . ,0.3, where i l m  
was not permitted to be closer than 0.1 to the ends of 1,and the other taking 
6 = 0.02,0.04, . . .,0.3,  where i l m  was kept at least 0.02 from the ends. (For 
simplicity we shall not mention any further the latter requirement, which had 
only a very minor impact on performance.) Values of 1 ~ 1ranged from 30 to 250. 
We assessed performance using both standard deviations and median absolute 
deviations. In most cases it was found that the sequential method gave better results 
for values of < near the lower end of its range. 

Our results also showed that the relationship between L and 4. for fixed nz, 
had surprisingly little impact on performance. For example, taking m = 50 and 
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varying l from 5 to 50 we observed that the smallest robust scale estimates, and 
the smallest quantiles of absolute differences, were obtained for f in the range 
0.1-0.16, without showing any obvious trends. However, it was seen that when 
the standard deviation criterion was applied, rather than mean absolute deviation, 
slightly higher values o f f  were needed to achieve optimal performance. 

Choice of h for the sequential method was explored for m = 50, 100 and 200 
and f =0.1. Optimal performance using either the standard deviation criterion, or 
that based on maximum absolute difference, was obtained for h = 13, 19 and 29, 
corresponding, respectively, to the values chosen for m.  However, when employing 
mean absolute difference the optimal values of h were substantially smaller, at 
h = 7, 13 and 13, respectively. These properties result from the fact that standard 
deviation is affected by a very small number of large deviations. It was found too 
that, while the optimal value of h increased with m ,  the optimal value of h / m  
(proportional to the widths of the intervals l k )  decreased with increasing m .  That 
is, it was advantageous to decrease interval lengths with increasing m.  

5.4. Injuence of the pilot estimator: The reassessment part of our sequential 
method ensures that the method successfully overcomes inaccuracies in interme- 
diate estimation steps when estimating 8.In particular, the SRR estimator is sur- 
prisingly robust against poor choice of the pilot. To illustrate this property we took 
l = 10, m =50, h = 15 and f = 0.1, resulting in n =2lm = 1000. But we calcu- 
lated the pilot estimator using only 50 points, one-twentieth of the full dataset; the 
pilot was thus very highly variable. Nevertheless, the sequential method produced 
particularly reliable final results. For the setting just described, Figure 3 shows 
10,000 plots of estimates as functions of k, the stage of the reassessment procedure. 

FIG.3 .  Ten thousand individual estimates as functiorzs of the stage ofthe SRR method. Sample size 
was n = 1000. 

http:0.1-0.16
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5.5. Variants of the reassessment method. We simulated two variants of 
our SRR method. One involved the modification that if the likelihood ratio 
test did not produce a significant result at a given step, it was reapplied on a 
substantially enlarged interval, rather than simply using the interval associated 
with the preceding step. This gave results very similar to standard SRR. The other 
variant involved keeping interval length constant at that where the nonsignificant 
value of the likelihood ratio statistic was encountered when working through the 
reassessment steps. This gave worse results than conventional SRR. 

5.6. Simulation of the spatial problem. We implemented the method sug- 
gested in Section 3, using a smooth quadratic fault line C and data generated 
by the model Yi= f (x,) + ~ i .The function f was as defined at (3.I), with 
$(x) = 0.8x2 + 0.1, g,  EE 0 and g2 = 1. The function $ is illustrated in either 
panel of Figure 4. For simplicity we used the same error distribution as in Sec- 
tion 5.2 and also the same tuning parameters: h = 15, t =0.1 and t = 10. 

The initial estimate was chosen by applying the SRR method to the one- 
dimensional changepoint problem on the left-hand vertical edge of the unit 
square 8 = [O, 112.Then a semicircle was drawn, centered at the initial estimate 
and with its axis horizontal. The next estimate was found by applying the SRR 
method to the one-dimensional problem on the semicircle. From the first two 
estimates of points on C one may obtain an approximation to the tangent. 
Each subsequent estimate was computed by striking an arc (of radius 0.02 and 
subtending angle 2x13) across the most recent tangent estimate and solving the 
one-dimensional changepoint problem on the arc, using the SRR method. In this 
way the algorithm worked its way along C from the bottom left to the top right 
of 8, stopping as soon as the estimate exited the square. 

(a> (b) 

FIG.4. Plots of the fa~llt line C and of 100 seyzcential estimates for (a) nz = 35 and (b)m = 50. 
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Panels (a) and (b) of Figure 4 each show the results of 100 simulations for 
m = 35 and m = 50, respectively. The latter values were chosen since they lie on 
either side of the smallest value (approximately nz = 40) for which the algorithm 
loses contact with C, within 8,less than 1 %  of the time. In particular, when m = 35 
the algorithm strays well away from C on two occasions out of 100, and on a few 
other occasions it meanders some distance from C but manages to return. However, 
for m = 50 it hardly departs from C for any part of any of the 100 estimates. 

6. Proofs. 

6.1. Preliminaries for proofs of Theorems 4.1 urad 4.2. Suppose we are 
conducting the test on an interval ,$l q(n). In the following of bounded length q = 
discussion we regard and q as nonstochastic, although in practice they would 
involve stochastic effects. There, the probabilities considered below would be 
interpreted conditional on the past. The bounds obtained would nevertheless be 
the same deterministic bounds, available with probability 1 in the probability space 
generated by past events. 

Assume initially that Qo, denoting the true value of 8,  is an element of 
[xN.x,,,-N), and let QO' be the design point (x,,, say) such that x,, < Qo < x,,+l. 
Let Q1 = x,,denote any design point for which N < i 1 5 nz -N. It may be proved 
that T(8o) = T(OOf)= T(Q1)+ TI  + T2,where TI = (SI - S2){2A- v(S1 + S2)}, 
S1 and S2 equal the averages of Y, over N < i < io and io + 1 5 i < m - N, 
respectively, A equals the sum of Y, over N < i 5 i l  minus the sum over N < i 5 io, 
v = i l  - io, J1 = u/(io -N + I),  82 = v/(nz - N - io) and 

Define Dl = - - &i andCNiicio 

If m = MZ (11) + cc then, since the &j ' s have zero mean and finite variance, we have 
for all < > 0, 
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We may deduce from this property and the definition of T2 that T2 = T3 + Tq, 
where T3 is nonstochastic and equals 0 ( v 2 / m )uniformly in N 5 i l  5 nz - N ,  
Tq is stochastic and vanishes if v = 0, and for all < > 0, 

P {  sup iTq ( i l ) / v /> < }  + 0. 
Nils m - N  

[If V = Ir( i l ) is a random variable that vanishes when i l  = io, we interpret V / v  
as zero if i l  = io, i.e., if v = 0.1 

Similarly, TI = -/vj y 2  + G + Tg, where Ts is nonstochastic and equals O(lvIq), 
and T6 is stochastic and satisfies T6(io)= 0 and, for k = 6 ,  

(6.3) 	 p (  SUP lTk(il)/vl > C 5 o( l )  + P (  sup lD2( i l ) /v l> C1{}, 
h'51l5171-N N i ~ l i i n - N  

the constant C1 > 0 not depending on rn, n or t . 
We may deduce from (6.2)and (6.3)that 

where T7 is nonstochastic and equals O { ( i l- io)2m-1+ lil - iolq},and Ts is 
stochastic and satisfies T8(io)= 0 and (6.3).It follows from these properties that 
if q(n )+0 then 

(6.4) lim limsup sup ~ ~ ~ ( 1 6Q o I  > l1<rn-')rim n - + a  ~ \ r i 6 ~ < ~ , ~ ~ - , \  
- = 0. 

where Poo denotes probability measure under the model f ( . I & )  for f .  
More simply, it may be proved that if cCrlt= mc,  where c = < ( 1  - 4 )  and 

i. t ( c ' ,f ), and provided q(n ) -+ 0, then for any E ( < ,  f ) and 62 E (e', $ ) ,  

inf PO,(SUPT > ccrit ) -+ 1 3 
.xtl VIZ 500 <xm-Clni 

(6.6) 	 SUP P@(SUPT > cclit) -+ 0, 
H O i * ~ 4 n ror & 0 2 ~ l I r - ~ ~ r n  

where sup T denotes the supremum of T(x,)over N 5 i 5 m - N. [The role of c' 
is to ensure that each series in the definition of T ( 8 ) is based on at least C m  data, 
for some C > 0. Note too that, if 80 is fixed at a number which divides 1 in the 
proportion p : (1 - p) ,  then the ratio of supH T ( 0 ) to mp(1 - p ) y 2  converges to 1 
in probability.] 

6.2. Proof of Theorem 4.1. The sequential refinement with reassessment 
method involves a sequence of L tests, the jth of which we may take to give a 
result RJ which equals 1 if the corresponding version of sup T exceeds cCrltand 
equals 0 otherwise. Thus, the sequence of tests produces a vector R = ( R 1 ,. . ., R e )  
of 0's and 1 's. Results (6.4)-(6.6) imply the following property, which we call ( P I ) .  
Conditional on R ,  = 1 and RJ+1 = 0. and for k 1 2, the probability that 
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"RJ+2 = .. .  = RJ+k+l = 0 and R,+k+2 = I" is bounded above by nf , where 
nl > 0 does not depend on j and nl =nl(n) +0. 

To derive (PI), note that, in view of the "reassessment" aspect of the SRR 
method, a sequence R, +2 = . . . = R +k+ 1 = 0 may be interpreted as a sequence 
of k pairs of independent tests, in identical settings and in a reassessment cycle of 
the algorithm, where the two test results are conflicting. The test pairs give results 
( I? , ( ,  R,+k+2-l) = (1, o), for 1 5 i 5 k, where rl < . . . < rk = j. If for the ith pair 
of tests in the reassessment cycle. giving result (RrI, R , + x + ~ - ~ ) ,  the value of Q0 

is within the central proportion 1 - 262 of the interval, then, for the (i + 1)st pair 
of tests, the probability that Q0 is within the central proportion 1 - 2C1 is close 
to 1, and therefore the probability that (RrIT2, RJ+X+2-(l+2))= (1,  1) is close to 1. 
Hence, the probability that (R,,,,, R,+k+2-(,+2)) = (1,O) is close to 0. On the 
other hand, if for the pair ( R ,  , R,+k+2-L)  the value of Qo is not within the central 
proportion 1-2c2 of the interval, then the probability that (Rrl+, ,RJ+k+2-(l+~))= 
(0,O) is close to 1, and so the probability that (R,[+, , RJ+k+2-(l+l))= ( I ,  0) is 
close to 0. Property (PI)  follows from these results. 

Property (PI) implies that runs of 0's in the vector R are relatively short. In 
particular, the probability that the length of an arbitrary run of 0's exceeds 3 
converges to 0 as n +oo.Call this property (P2). 

Results (6.4)-(6.6) imply that if Qo is in the central proportion 1 - 2t2 of 
the interval on the occasion of the jth test then, with probability close to 1 ,  
both (a) Q0 is in the central proportion hm-' of the interval on the occasion of 
the ( j  + 1)st test, and (b) R,+l = 1. If (a) holds then, with probability close 
to I ,  R,+2 = 1. Moreover, (6.4)-(6.6) imply that if Oo is not in the central 
proportion 1 -2c2 of the interval on the occasion of the jth test then the probability 
that R, = 0 is close to 1. It follows that sequences of 1's in the vector R are 
relatively long, with the probability of not only the length of an arbitrary sequence 
exceeding C, but also the number of tests in the sequence for which Ho is in the 
central proportion hm-' of the interval exceeding C, converging to 1 for any 
C > 0. Call this property (P3). 

Together, properties (P2) and (P3) imply that, for some 6 > 0, the probability 
that, among the intervals remaining at the end of the algorithm for the SRR method, 
there are at least 6! for which O0 is in the central proportion hm-' of the interval, 
converges to 1 as iz --+ oo.(The intervals that remain at the end of the algorithm 
are those that correspond to tests that gave the result R, = 1 and which were not 
overridden in a reassessment cycle of the algorithm.) 

Theorem 4.1 follows from the latter result and the fact that the intervals that 
remain at the end of the algorithm are nested. Indeed, this property implies that, 
with probability tending to 1 as n + oo,Q0 is contained in an interval centered 
on &RR and of width no more than 2t, where t = (hlin)'" (Here, 6 is as in the 
previous paragraph.) Since !is no smaller than a constant multiple of n lm,  then, 
for some C > 0, t is not of larger order than s E exp{-C(n/in) log(m/h)}. The 
definitions of m and h in the theorem imply that s = o(e-P"). 
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6.3. Proof of Theorem 4.2. If the errors are independent and Gaussian, 
and if < 2 1, then the left-hand sides of (6.1) and (6.2) are both equal to 
~ { m - ' / ~  for some CI  > 0 not depending on <. Still in the Gaussian exp(-Clrn)) 
case, if we put < = (C2 logn)'I2 on the left-hand side of (6.3) then the right-hand 
side may be taken as 0(n-'~'3), where C3 > 0 does not depend on C2. 

This leads to the following analogue of (6.4), valid for Gaussian errors: if <, is 
any sequence of positive constants diverging to infinity, and if m-I log n +0, then 

(6.7) sup - $01> o<nmP1(~ogn)'12J=~ ~ ~ ( l 8  ~ ( n - ' )  
X N  5@0<x,n-N 

for all C > 0. Likewise, provided m-' logn + 0, the following versions of 
(6.5) and (6.6) hold in the Gaussian case: 

(6.9) SUP T > ccr~t) ~ ( n - ' )P H ~ ( s ~ P  = 

005\c2m O r  @o?x,n-t2,n 


for all C > 0. 
To obtain analogous results for non-Gaussian errors we employ Gaussian 

approximations to processes of partial sums. In particular, defining U, = El,, sJ, 

and writing a2for the variance of the errors s , ,  there exists a standard Brownian 
motion W such that 

(6.10) max I U;-a W(i) 1 > cl log n + x I 5 c2 exp(-c3x) 
l i i i n  

for all x > 0, where el. c2, c3 depend only on the error distribution. See, for 
example, Shorack and Wellner [(1986), page 66ff.l; we have used the fact that 
the distribution of the errors has a moment generating function in a neighborhood 
of the origin. 

Since the intercept term in the quantity "cl logn + x" on the left-hand side 
of (6.10) is proportional to log 11, and since exp(-c3 5,) = 0(n PC) for all C > 0 if 
<,/ logn + oo,then in view of (6.10) the additional complication of non-Gaussian 
errors may by incorporated by considering deviations that are of larger order 
than log n rather than just (log n)'I2. Arguing thus we may show that, provided 
m-'(logn)' + 0, (6.8) and (6.9) hold without change in the non-Gaussian case 
and (6.7) continues to hold provided we remove the exponent from (logn)'I2 on 
the left-hand side. 

In consequence, if <, --+ oo and we take A. = <,,logn in the proof of 
Theorem 4.1, and choose m to diverge to infinity sufficiently fast for nzP'{A. + 
( 1 0 ~ n ) ~ )  0, then all the probability approximations stated in that proof are 
accurate to order nPC for all C > 0. In particular, probabilities that were close 
to 0 or 1 are now within ~ ( n - ~ )  of those respective quantities, for all C > 0. As a 
result, with probability 1 - is within ~ ~ ( h / m ) ' ~ " l "  0 (nPC)  for all C > 0, iSRR 
of 80 for some C1, C2 > 0. This establishes (4.5) in the case of 8 = &RR. 
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